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The Monte Carlo simulation of molecular liquids using a minicomputer is described. 
The liquids studied are composed of nonspherical molecules interacting with dipole, 
quadrupole and anisotropic overlap forces. Results are reported for the angular pair 
distribution function, the molecular centers distribution function, the configuration 
energy, the mean squared force, and the mean squared torque, for a system of 128 strongly 
quadrupolar molecules. The results agree very well with previous Monte Carlo results 
for such a system obtained on a CDC 6600. 

1. INTRODU~-IT~N 

The computer simulation of fluids by Monte Carlo and molecular dynamics 
provides essentially exact results for the model fluid under consideration. Thus, 
these methods have become of primary importance in the study of fluids, 
complementing the traditional approach of comparing fluid theory predictions 
with experimental results. Unfortunately, the use of computer simulations has 
become of major importance at a time when the availability of large machines for 
performing such studies seems to be greatly reduced. Hence, we felt it worthwhile 
to determine the feasibility of programming a minicomputer for such simulation 
work. 

This paper reports success in programming a NOVA 2 minicomputer with 32K 
16 bit-words of memory and external disc storage for performing Monte Carlo 
calculations on systems of 128 nonspherical molecules. While execution time is 
slow on this particular machine (a sequence of 105 configurations for 128 linear 
molecules requires about 125 hr of computation), we feel the yield justties the 
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effort since from one run we obtain nine equilibrium property values. the value of 
the center-to-center pair correlation function. g,(r,,), and values for the angular 
pair correlation function g(r,,w,w,) at five specific orientations. Furthermore, 
there are other minicomputers on the market which should execute the present 
program faster by a factor of two or three. We have found the NOVA 2 to be 
reliable over days of continuous operation and results obtained are comparable, 
within the statistical precision, with results previously obtained from a similar 
program executed on a CDC 6600. 

In the sections which follow we describe: (a) the Monte Carlo problem for 
molecular fluids, (b) the NOVA 2 and peripheral configuration employed, (c) the 
Fortran program developed, (d) preliminary results obtained, (e) conclusions, 
including options for improving execution time. 

2. MONTE CARLO METHOD FOR MOLECULAR FLUIDS 

The Monte Carlo procedure employed here is the same, in principle, as that for 
systems of spherical molecules and is well documented elsewhere [l, 21. The 
primary additional consideration is the orientation of the nonspherical molecules. 
In general, properties of fluids of nonspherical molecules depend on molecular 
orientation as well as the relative distances between molecules. The Monte Carlo 
program must, therefore, maintain the location and orientation of each molecule in 
the system. The Monte Carlo procedure for simple molecules is modified, then, 
by reorienting the nonspherical molecule in addition to its relocation when a new 
system configuration is proposed. 

The potential models which we have studied for linear molecules are of the form: 

4r12w1w2) = kdr12) + 4dr12W1W2h (1) 

where u is the full pair potential between molecules 1 and 2 which are separated 
by a distance r12 , having orientations w1 and w? , respectively; uLJ is the Lennard- 
Jones pair potential: 

h.&lJ = 46K(5/r12Y2 - (d~,,Y% (2) 
U, is the anisotropic part of the potential. 

The anisotropic potentials which have been considered include dipole, 
quadrupole and anisotropic overlap models, given by (3)-(5): 

u uu = (p2/r%)(w2c - WA 

uQo = (3Q2/4r9[l - 5(c12 + c22 + 3c,“cz2) + 2(s,s,c - 4c,c,)“] 

uor = 4 E s(u/r)l2(3c,2 + 3c,” - 2). 

(3) 

(4) 

(5) 
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Here ci = cos Bi , si = sin 13~ , c = cos 4, where 19 and 4 are the Euler angles 
relative to a frame whose polar axis is along the line of molecular centers; p and Q 
are the dipole and quadrupole moment, respectively, and 6 is a dimensionless 
overlap parameter. 

The minimum number of variables required to specify the location and orien- 
tation of a molecule depends, of course, on its shape. For linear molecules, the 
only shape considered here, the minimum number is five, e.g., three components 
of a location vector for the molecular center of mass, r, and two Euler angles 
w = {(Y, /3}, between a body-fixed axis and the space-fixed reference frame. If the 
orientations are actually specified by Euler angles {IX, /I}, determination of the 
relative angles 0, 4 for use in Eqs. (3-5) is computationally slow. Alternatively, if 
the orientations of N molecules are given by the relative angles (t9, +}, then B(N) 
(N - 1) pairs of angles must be stored throughout the calculation. As a compromise 
on speed and storage, we specify the orientation of a molecule by the direction 
cosines of the molecular axis, from which the cosines of the relative angles {f?, 4} 
may be determined by simple dot product relations. Thus, we actually store six 
variables for each linear molecule, the three components for the center of mass and 
the three direction cosines for the molecular axis (only two of which are indepen- 
dent). 

Another consideration in studying nonspherical molecules is how to determine 
property values from the simulation. There are two possible methods: (a) use the 
Monte Carlo calculation to form a histogram bf the full angular pair correlation 
function g(r,,w,w,). Properties can then be obtained from the standard statistical 
mechanical relations which involve numerical integration over the g(r,,w,w,) 
histogram. (b) The second method uses the Monte Carlo procedure to directly 
perform the integrations for the properties. Having determined properties by both 
methods, we find method (b) to be superior to method (a). Accuracy in the deter- 
mination of properties by method (a) requires small angular increments in wr and 
w2 which, in turn, requires large amounts of computer storage and makes for long 
execution times. The second method is simpler to accomplish, more accurate and 
is readily performed on small computers. The method (a) does have the advantage 
that only one long Monte Carlo is run from which property values may be estimated. 

3. DESCRIPTION OF THE MINICOMPUTER SYSTEM 

There are a number of reasons for using minicomputers for scientific calculations. 
Large computers have the advantage where word size, speed and input-output 
(IO) complexity are concerned; however, where cost is concerned the mini- 
computer has a definite advantage. For example, Kottler and McGill [3] quote a 
cost advantage of between 80:1 and 100:1 for a Data General 800 system with 
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hardware floating point multiply/divide when compared to an IBM 360/75. These 
figures are dependent on the type of program being compared but serve to illustrate 
the point. This cost advantage must be weighted against increased computing 
time, the reliability of the minicomputer over long operating periods and less 
sophistication. Particularly in situations where pure number crunching capability 
with high CPU attention is required, such as Monte Carlo calculations, the cost 
advantage of the minicomputer is expected to be high, although no detailed 
costing was done in the present application. 

The computer used here was a Data General Nova 2/10 with optional 32K 16 
bit-words of core storage and lOOOn set memory cycle time. The CPU included the 
following options: power monitor, auto restart, auto program load, real time clock, 
hardware multiply/divide, high performance hardware floating point processor. 
The following peripherals were serviced by the CPU: (a) two moving head disc 
units with controller for a total 2.5 megawords of storage, (b) serial matrix line 
printer (165 cps), (c) fast paper tape reader and punch, (d) teletype unit. 

The computer was operated under the Data General real time operating system, 
RDOS revision 3.02, which handles task scheduling and system maintenance. The 
executive remained core resident and occupied about 3K words so that 29K word 
locations were available for computation. The software available included Data 
Generals’ Fortran IV, Fortran V, Basic, and Algol. The Fortran V compiler was 
chosen as the medium for compilation. This compiler is a code optimizing compiler, 
i.e., redundant operations are eliminated and floating point operations are 
optimized for effective use of the floating point hardware. This leads to a very 
compact coding of the source program. 

4. DESCRIPTION OF FORTRAN PROGRAM 

The major time-consuming calculation in Monte Carlo programs is evaluation 
of the system energy U, which is assumed to obey pairwise additivity, i.e., 

A substantial saving in execution time is realized by taking advantage of the fact 
that when one particle k, in the system is moved, only (N - 1) pair energies change. 
Then, if the energy of the “old” configuration (the configuration prior to the move) 
is known, the energy of the “new” configuration can be found as the sum of the old 
energy plus the change in energy due to movement of the kth particle, i.e., Eq. (6) 
may be written: 

u new = U”‘d+AUk, (7) 
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where 

In the usual Monte Carlo calculation each of the pair energies u(rijwiwj) for the 
starting configuration is calculated and stored and the total system energy is 
formed by Eq. (6). Subsequently, for each configuration generated, the system 
energy is determined by equations (7) and (8), i.e., when the kth particle is moved, 
each of the (N - 1) pair energies ~(r~!~w~“‘” wj) are calculated, the corresponding 
U(riidWOkldWj) are obtained from storage, and equations (7) and (8) are solved for 
Pew. If the new configuration is accepted, the pair energies U(rijdWiidWj) in 
storage are updated to the new values u(r~~w,~ew wj). This obviously decreases the 
amount of calculation required, but places a heavy demand on core storage. The 
matrix of pair energies is symmetric, i.e., 

u(riiwiai) = U(rjjWjWj), (9) 

even so, &V(N - 1) numbers must be stored just for the energy. If other properties 
are also being calculated, similar storage must be provided for each of them. 

We avoid this large storage requirement in the program for the NOVA by 
calculating both sums in Eq. (8) for each configuration generated, thus storing 
none of the individual pair properties. Execution time is increased accordingly. 
Alternatively, one could store the pair energy matrix on disc and transfer it into core 
column by column as it is needed. When a move is accepted, however, a major 
portion of the matrix must be brought through core in order to update the changed 
elements from u(rkj oldwfdwi) to f4(r~~Ww~W wj). On the NOVA 2 system we found 
this transfer to be slower than recalculating the elements of the matrix as indicated 
above. Hence, our calculation does not depend upon core-disc transfers during 
execution. The evaluation of both sums in Eq. (8) for each configuration is the only 
true modification we have made in the Monte Carlo program to transfer its use 
from a CDC to minicomputer environment. 

Figure 1 shows a simplified schematic flow diagram of the program used on the 
NOVA 2. The Monte Carlo calculation is done by the main program labeled 1, 
which is supported by several subroutines, the two principal ones being named 
INITIAL and ENERGY. Subroutine ENERGY consumes the major portion of 
execution time as it forms the sums analogous to Eq. (8) for all properties of 
interest. Also indicated in the figure is the fact that every 30 min or so, 
corresponding to M number of moves, the program dumps current particle 
location vectors, direction cosines and property values onto disc file 2. Disc file 1 
holds the starting configuration’s location vectors and direction cosines. The 
periodic data dump serves as a back-up against possible power failure and allows 
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7 

FIG. 1. Simplified Schematic Flow Diagram of Fortran Monte Carlo program developed for 
NOVA 2. 

other system users to interrupt program execution. This entire program resides in 
core throughout the calculation and required about 27K words of NOVA 2 
memory. A further saving of 34K words could be attained by making the 
subroutime INITIAL a separate main program, as it is only used at the initial start 
(or restart) of a calculation. The main program labeled 2 takes the raw data 
generated by program 1, reduces it to the desired form and estimates the statistical 
precision of the results. 

Execution time for the Monte Carlo program depends largely on the number 
of particles in the system, to some extent on the complexity of the potential model 
under study, and only slightly on the number of properties being calculated. 
These findings are summarized in Table I which compares the number of con- 
figurations generated per hour by the Fortran program for 64 and 128 particle 
systems for the simple LennardJones fluid and the Lennard-Jones plus quadrupole 
model of Eqs. (1) and (4). It can be seen from the table that doubling the number of 
particles roughly doubles execution time, whereas changing the number of proper- 
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TABLE I 

Approximate Number of Configurations Generated per Hour on Nova 2 

u+QQ 

No. particles 
No. g(rIpwp2) tested 

LJ No. properties 1 5 

64 3025 1 2153 1846 
8 1912 1671 

128 1616 1 1131 997 
8 1003 893 

ties calculated has much less effect. Additionally, we find the dipole model of 
Eqs. (1) and (3) to execute about 2 % faster than the quadrupole fluid, and the 
overlap model of equations (1) and (5) to be about 2 % faster than the dipole model. 
These program execution times of the NOVA 2 may be compared with speeds 
attained on IBM and CDC machines. A Fortran program for simulating the 
overlap model fluid using 64 particles and calculating only the system internal 
energy and seven values for the angular pair correlation function generates about 
20,000 configurations per hour on an IBM 370/155 and about 106,000 configura- 
tions per hour on a CDC 6600. 

5. PRELIMINARY RESULTS 

The program described above calculates the following 
systems of up to 128 molecules interacting with potentials 
or (4) or (5): 

canonical averages for 
of Eqs. (l), (2), and (3) 

581/21/z-8 



234 HAILE ET AL. 

where yij is the angle between the axes of molecules i and.j. From these avarages 
one may obtain the following equilibrium properties: the configurational internal 
energy, UC, the pressure, the constant volume heat capacity, C, , the Fowler model 
sutiace tension yim, the Fowler model surface excess energy, Ef”, the mean squared 
force on a molecule, (Flz?, the mean squared torque on a molecule. (ri%), and the 
Kirkwood angular correlation parameters G, and Ge . In addition, the program 
determines the center-to-center pair correlation function g,(r,,) and the angular 
pair correlation function g(r,,w,w,) at five specific orientations. 

TABLE II 

Comparison of NOVA 2 and CDC results for Property values of f J + QQ 
model fluid at kT/c = 0.719, pus = 0.80, Q/(Po~)~/~ = 1 

Property NOVA 2 CDC 6600 

UC/NC -8.642 ~+ 0.197 -8.483” + 0.131 

dimwit 744.0 * 34.0 772.0” * 15.0 

<Tlv~2 31.2 * 1.09 31.oc f 1.5 

a See [4]. 
a See [5]. 
c See [6]. 

In Table II we compare results for linear quadrupoles obtained from the program 
run on the NOVA 2 with results previously obtained on a CDC 6600 [4-61. The 
values for UC, (F12) and (Tag> reported in references [&6] do not include a long- 
range correction for values of the radial component r greater than the value at 
which the potential is set to zero, rcutoff . For the sake of consistency in the com- 
parison we have included no long-range correction on the minicomputer values 
shown in Table II. Further, the values for the mean-squared force (F12> and mean- 
squared torque (Tag> reported in [5,6] were obtained by integration over the 
Monte Carlo-determined correlation function as described under method (a), in 
Section 2 above. The values for these two properties from the NOVA run are, 
therefore, more reliable since they were obtained by method (b) of Section 2. 

Figure 2 compares values obtained from the NOVA 2 with previously obtained 
values [4] for the center-to-center pair correlation function, ge(rle), for a LJ + QQ 
model fluid. The earlier results were determined for a system of 64 linear molecules 
from a chain of some 80,000 configurations after the system had reached equili- 
brium. The NOVA 2 results are from a run of similar length on a system of 128 
molecules, hence, the extended range of g,(r,,) indicated in the figure. 
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FIG. 2. The center-to-center pair correlation function, g&&, comparing CDC (line) [4] and 
NOVA 2 (points) results, for LJ + QQ at kT/e = 0.719, pus = 0.80, Q/(Eu~)~/~ = 1. 

FIG. 3. The angular pair correlation function g(r,,w,w,) for LJ + QQ fluid for molecular pairs 
in the “T” orientation, comparing CDC (line) [7] and NOVA 2 (points) results at kTjc = 0.719, 
pu3 = 0.80, Q/(eu5)“* = 1. 

Figure 3 shows a similar comparison for the angular pair correlation function 
g(r,,w,w,) for the model fluid LJ + QQ for molecular pairs in the “T" configura- 
tion, i.e., 8, = 7~12, t$ = 0, +I2 undefined, where 0, , 19~ , and dIz are the relative 
angles defined under equation (5) above. The earlier results are from a chain of 
about 410,000 configurations for 64 particles generated on the CDC 6600 [7]. To 
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achieve consistency in the comparison, the same angular increment of f1.5” was 
used in the minicomputer calculation as was used in [7]. The agreement in Fig. 3 
is remarkable considering the minicomputer run was only one-fifth as long as the 
CDC calculation. 

6. CONCLUSIONS 

The results shown above indicate that the NOVA 2 is capable of reliable, sus- 
tained operation of sufficient magnitude to produce useful results by the Monte 
Carlo method for simulating fluids. The only limitation found in this feasibility 
study is that of speed of program execution. This, in turn, imposes a limitation 
on the class of problems for which one might use a minicomputer. Probably an 
upper bound on the time one would be willing to invest in a single run is of the 
order of two weeks of computer time. On the fastest minicomputer available this 
would yield 5-10 (106) configurations of a Monte Carlo sequence, depending on 
the number of particles, potential model, etc. Thus, one would not consider using 
present minicomputers for specialized studies which require significantly longer 
runs than calculation of bulk fluid properties, such as the study of phase transitions. 
Though the class of problems is restricted, it is still large, and we feel the 
minicomputer provides a viable alternative which one might seriously consider, 
especially in light of present economic constraints. 

There are a few options which can be considered in connection with one’s own 
particular problem of interest which would improve execution time. We have 
already mentioned use of faster hardware than is avaialable on the NOVA 2. A 
second possibility would be a careful machine coding of the part of the program 
which we refer to as ENERGY (Fig. 1). A third consideration is the shape of the 
unit cell used in the Monte Carlo procedure. The program described here does not 
use the usual cube-shaped cell but rather a truncated dodecahedron after Wang and 
Krumhansl [S]. Since our interests include such long range properties as pressure, 
and since we also wish so obtain as full a description of the distribution functions 
g(rr,w,w,) as possible, we need a large value for the cutoff distance of the potential, 
rcutoir * By considering shapes other than the cube, the value for reutofr may be 
extended (see reference [S]). Thus, the value for rcutorr for a system of N particles 
using the truncated dodecahedron is the same as for a system of N21i2 particles 
using a cube. The program using the truncated dodecahedron with N particles is 
about 25 % slower than the same program using a cube with N particles; whereas 
a program using a cube with N21/2 particles is about 40% slower than the same 
program using a cube with N particles. Many users may not be interested in long 
range effects, however, in which case use of a cubic cell would improve execution 
time accordingly. 
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